
P1: ZBU

International Journal of Theoretical Physics [ijtp] pp830-ijtp-464435 June 12, 2003 18:34 Style file version May 30th, 2002

International Journal of Theoretical Physics, Vol. 42, No. 2, February 2003 (C© 2003)

Can Quantum Mechanics Be Reconciled
With Cellular Automata?

Gerard ’t Hooft 1,2

Received January 23, 2003

After a brief account of the GHZ version of the Bell inequalities, we indicate how
fermionic fields can emerge in a description of statistical features in cellular automata. In
square lattices, rotations over arbitrary angles can be formulated in terms of such fields,
but it will be difficult to produce models with exact rotational invariance. Symmetries
such as rotational symmetry will have to be central in attempts to produce realistic
models.
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1. A THOUGHT EXPERIMENT

Several speakers in this meeting express their optimism concerning the possi-
bility to describe realistic models of the Universe in terms of deterministic “digital”
scenarios. Most physicists, however, are acutely aware of quite severe obstacles
against such views. It is important to contemplate these obstacles, even if one be-
lieves that they will eventually be removed. In general, they show that our world
is such a strange place that “logical” analysis of our experiences appears to be
impossible. I do believe that these are only appearances, but these facts invalidate
many simple-minded ideas.

The common denominator is the “Bell inequality.” Bell (1964) discovered that
the outcomes of statistical experiments can violate inequalities that one can derive
by assuming that every measurement can, in principle, be applied to any system
of particles, even if only a small subset of experiments can be performed at the
same time on the same system. His inequalities applied to the statistical outcome
of such experiments. The version of the “Bell contradiction” that I like most is
a more recent discovery (Greenbergeret al., 1989), where a setup is described
that only produces certainties, not statistics, and these can only occur in quantum
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mechanical systems; in classical systems they are forbidden, and indeed, producing
cellular automata with classical computers that mimic such strange effects, will
always be difficult.

Our experience in the physical world is that setups can be made where particles
can emerge in almost any desired wave function. Classically, one can think of a
device that contains two dice, a red one and a green one. The machine is constructed
in such a way that if one die emerges, say the red one, showing some numberx
(an integer between 1 and 6), then the other, the green one, will always show
y = 7− x. The two dice are shipped to two distant observers, without changing
their orientations. If one observer sees, say,x = 4, he will know for certain that
the other observer hasy = 3.

In Quantum Mechanics, one can make more crazy devices of such kind
(Greenbergeret al., 1989). A machine can be built that emits three particles,
1, 2, and 3, with spin12, say neutrons. The spin in thez-direction of each of these
particles can have two values,± 1

2. We omit the immaterial factor12, and say that
there are three operators, calledσ (1)

z , σ (2)
z , andσ (3)

z . In a Hilbert space with alto-
gether eight basic states, each of these operators has four (degenerate) eigenvalues
+1 and four eigenvalues−1. We now assume that our device emits them either
with all spins up (σ (i )

z = +1), or all values down (σ (i )
z = −1). More precisely, we

assume that the “wave function” is

ψ = 1√
2

(| + ++〉 − | − −−〉). (1)

Now let’s assume that the particles fly away towards three distant observers, liv-
ing on different planets, and each of these observers will decide, on the spot,
whether to measure eitherσx (the spin in thex-direction) orσy (the spin in the
y-direction) of the particle that reaches him. The observers will not know in ad-
vance which measurement will be made by the other observers. In matrix form, the
operators are

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
. (2)

As is well-known, the observers are unable to measure bothσx andσy.
Suppose that all observers had decided to measureσx. Then, with the wave

function (1), it is easy to compute the expectation values〈
σ (1)

x σ (2)
x σ (3)

x

〉 = −1. (3)

In other words, the measurements are completely correlated: if two observers
measure+1, the third will surely find−1.
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Similarly, there are correlations if one observer had measuredσx while the
two others measuredσy: 〈

σ (1)
x σ (2)

y σ (3)
y

〉 = +1, (4)〈
σ (1)

y σ (2)
y σ (3)

x

〉 = +1, (5)〈
σ (1)

y σ (2)
x σ (3)

y

〉 = +1. (6)

If only one of the observers, or all three of them, measuredσy, one finds no
correlations: 〈

σ (1)
x σ (2)

x σ (3)
y

〉 = 〈σ (1)
y σ (2)

y σ (3)
y

〉 = 0. (7)

One now could ask: what is the “ontological state” of the particles? Suppose we
had determined empirically the correlations (4), (5), and (6). If we knew for certain
that the particles will always behave this way, we could say: well then, multiply
the three expressions together. Since all measurements give either+1 or−1, and
for each particleσx is measured only once, whileσy is measured twice, one would
expect that the product of theσx measurements should always be+1, completely
in conflict with Eq. (3).

One must conclude from this experiment, of which several versions have
really been carried out, that it is impossible to have a particle and say: if I would
measureσx the outcome would be this, and if I would measureσy, the outcome
would be that. Our problem with cellular automaton models is that one would very
much be inclined to allow for such attributions to a particle. According to Quantum
Mechanics, this is not allowed.

2. TRANSLATIONS

One of the key assumptions in the above scenario is that replacing a measure-
ment device by one that is rotated 90◦ is allowed without affecting in any way the
“ontological” state of the particle that is being measured. In gravity theories, this
might be questioned: rotating any macroscopic device may cause the emission of
ripples of gravitational waves, enough to disturb the particle in question. Rotation
is one of the simplest examples of a symmetry transformation. The experiment
above assumed that I can rotate a devicelocally, without simultaneously rotating
the particle that is on its way to the apparatus. “Spin” indeed refers to how an
object responds upon a rotation. It cannot be an ontologically impeccable property
of a particle. How can rotations, in particular rotations over arbitrary angles, be
viewed in a cellular automaton, which after all usually requires the introduction of
a lattice? Lattices usually do not allow for more rotational symmetry than rotation
over fixed angles, typically 90◦.
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Before discussing rotation, I first consider translations. If you have a discrete
lattice, at first sight only translations over some integral multiple of the unit lattice
link size a are allowed. But the knowledge of a little Quantum Field Theory allows
us to do better.

Suppose, for simplicity, that we have a sequence of ones and zeros on a
one-dimensional lattice. The translation operatorT(x) is defined to effectuate a
displacement of all zeros and ones by a distancex, if x = Na, andN is integer.
How do we defineT(x) if x/a is not integer? In particle theory, we can do this:
first, the operatorψ(x), wherex is a lattice site, is defined as follows:

ψ(x)|1〉x = (−1)N(x)|0〉x,

ψ(x)|0〉x = 0,

ψ†(x)|1〉x = 0,

ψ†(x)|0〉x = (−1)N(x)|1〉x. (8)

Here, the suffixx indicates that the entry at the lattice sitex is the one inside the
brackets, 0 or 1, and only that entry is affected. The quantityN(x) is defined to be
thetotal number of ones at the left of the site x. The operatorψ† is the Hermitean
conjugate ofψ .

It is easy to convince oneself that the productψ†(x)ψ(x) is an operator that
leaves the state unchanged, giving one if there is a one at the sitex, and zero
otherwise:ψ†(x)ψ(x)|σ 〉x = σ |σ 〉x. Now, notice

ψ2(x) = 0, (9a)

ψ(x)ψ(x′) = −ψ(x′)ψ(x), (9b)

ψ(x)ψ†(x′)+ ψ†(x′)ψ(x) = δ(x, x′). (9c)

Notice that the minus sign in (9b) and the plus sign in (9c) follow from the (−1)N(x)

in (8). They ensure that (9a) is a special case of (9b). What is nice about these
equations is that you can Fourier transformψ(x):

ψ(x) = (a/2π )1/2
∫ +π/a
−π/a

dp eipxψ̂(p), (10)

after whichψ̂(p) obeys equations very similar to (9a):

ψ̂
2
(p) = 0, (11a)

ψ̂(p)ψ̂(p′) = −ψ̂(p′)ψ̂(p), (11b)

ψ̂(p)ψ̂
†
(p′)+ ψ̂†(p′)ψ̂(p) = δ(p− p′). (11c)

ψ̂(p) is said to be the operator that annihilates a “particle with momentump.”
These particles are fermions; you can’t have two of them at the same place, either

in position space or in momentum space, becauseψ̂
2
(p) = 0.
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In Fourier space, a translationT(b) simply multiplesψ̂(p) with a factoreipb.
But now it is obvious that the same definition of a translation can be given if b is
not a multiple of the lattice length! Fourier transforming back to position space
then gives the new definition ofψ(x) in terms of the old one:

T(b): ψ ′(x) =
∑

x′

a sin(π (x − x′ − b)/a)

π (x − x′ − b)
ψ(x′). (12)

In the limit whereb→ Na, with N integer, this is just the usual displacement.
In the other cases, we see thatψ ′(x) produces alinear (quantum) combination of
states!

3. ROTATIONS

Defining a rotationR(φ) for any (fractional) angleφ can be done in similar
ways, but is not quite that easy. Imagine that we define an operatorψ(x, y) in a
two-dimensional position space. The definition is just as in Eqs. (8), except that
the functionN(x, y) is a bit more awkward to define:

N(x) is the number of ones at all sites (x′, y′) such that eithery′ < y or (y′ = y,
andx′ < x ).

Fourier transforming goes as usual, but now, Fourier space is the space of values
(px, py) with |px| < π/a and|py| < π/a, in other words: a square.

If we rotate this square by an angleφ that is not a multiple of 90◦ then the
edges do not match (see Fig. 1). There are several things one can do now. The whole
point is that, usually, we are interested only in large scale phenomena. These are
the phenomena that usually correspond to very small values forpx and py. Thus,
if we make sure that all points inside the inscribed circle of this square are rotated
simply by an angleφ, then the most relevant features all rotate as required. The
prescriptions at the edges will be more artificial and model dependent, but have
little effect on large-scale phenomena.

Fig. 1. A rotation in Fourier space.
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It is important that successive applications of translations and rotations have
the usual effects. This is called group theory. For instance,

T E(b)R(φ) = R(φ)T(ÄEb), (13)

whereÄ is the rotation over an angleφ. Equation (13) cannot be obeyed exactly
because the edges of the square cannot be made to match. One of our worries will
therefore be that we will have to explain an apparently perfect rotational symmetry
in the world that we are trying to describe.
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